MIT-Healthcare-Innovation-logo-black-red-2000x2000-transparent

MIT-Mexico Program fosters cross-border collaboration

Favianna Colón Irizarry spent last summer at Tecnológico de Monterrey, working alongside Mexican biotechnology researchers to develop a biodegradable coating that prolongs the shelf life of local foods. Assisting in this and other innovative projects at one of Mexico’s top research institutions was the opportunity of a lifetime, for sure. But, for Colón Irizarry, it’s the tapestry of experiences that accompanied her MIT-Mexico internship that will always resonate.

“From my internship, I gleaned a vital lesson: Cultural proficiency is indispensable,” she says.

A sophomore majoring in chemical-biological engineering, Colón Irizarry is among nearly 500 interns who have traveled to Mexico for a summer of work and study since the MIT-Mexico Program was launched by MIT International Science and Technology Initiatives (MISTI) in 2004. A flagship program within the Center of International Studies (CIS), MISTI offers tailored global experiential learning opportunities to more than 1,200 students each year.MIT-Mexico has enlisted the support of over 200 host partners in Mexico during the course of its 20-year history.

“It started as one student in 2004 doing an internship. Now in the summer it’s around 30 interns,” says MIT-Mexico Program Director Griselda Gómez, adding that the program has also placed MIT students at Mexican high schools as temporary STEM teachers through 170 Global Teaching Labs since 2012.

As the program begins its third decade, both Gómez and Faculty Director Paulo Lozano point to the number of students MIT-Mexico has involved over the years — contributing to myriad cross-border research partnerships — as the program’s foremost achievement.

“I think the large number of students that have gone to Mexico is a great accomplishment,” says Lozano, a Tecnológico de Monterrey alumnus and now MIT’s Miguel Alemán Velasco Professor of Aeronautics and Astronautics.

He credits Gómez, director of the program since 2006, with the initiative’s overall success, including “being very careful that the places we send our students are safe.”

For her part, Gómez says accommodating the interests of Mexico-bound students across a wide spectrum of academic subjects and fields “is a personal mission for me.”

“If students want to go to Mexico, I really want them to go and have a great experience. If we don’t have a specific project (matching student interests), we will go and look for one,” she says. “It’s very personalized.”

While MIT-Mexico offers internships in MISTI’s designated “impact areas” of climate and sustainability, health, artificial intelligence, and social impact, over the years it has arranged summer internships in several other fields, including architecture, urban planning, agriculture, and aeronautics.

Last summer, for example, MIT-Mexico interns worked on initiatives ranging from research on the continued value of textiles and craft methods to projects investigating low-carbon affordable housing solutions and employing AI for financial literacy. Internship topics planned for this summer include Design of 6G Communication Systems for Smart Cities, based in Mexico City, and Automatically Assessing Patients for Refractive Surgery in the city of Querétaro.

All are designed to promote cross-cultural experiences and strengthen ties between Mexican and MIT students and faculty, while boosting education, innovation, and entrepreneurship in Mexico and developing and exposing MIT’s research outside the United States.

Beyond the long-lasting impact interns say the experience has had on their lives (Gómez reports several “love stories” and even marriages have resulted), “it’s also a connection between researchers in Mexico and researchers at MIT — collaborations that may lead to exciting collaborative research later on,” Lozano says.

Lozano is MIT-Mexico’s second faculty director, taking over about a decade ago from now-retired political economy professor Michael Piore, who helped found the program in response to a proposal from a group of Mexican students attending MIT. Gómez says MIT-Mexico is unique among MISTI programs in that students from the host country were the catalyst for forming it and MIT alumni in Mexico were largely responsible for the funding that got it off the ground. It was also MISTI’s first program in a Spanish-speaking country.

Learning and practicing how to speak Spanish “in real life” was a primary motivator for what Matt Smith now calls “one of the best decisions I could have made for myself.” Smith, a second-year computer science and engineering major, was among 35 students who spent their January Independent Activities Period in Mexico through the Global Teaching Lab program. Assigned to teach at a Mexico City high school, Smith says the language barrier gradually melted away — at least partially — over a three-week period in which he immersed himself in local museums, parks, and culture and was amazed and impressed by the number of peaceful gardens and natural areas throughout the bustling city.

Like Global Teaching Lab programs in other countries, the MIT-Mexico program aims to increase interest in STEM topics at host country schools. It matches MIT students with high schools in Mexico, and materials are adapted from MIT online resources to prepare tailored workshops on STEM subjects that complement the local school’s curriculum.

The third piece of MIT-Mexico is the provision of the MIT Global Seed Fund (GSF) grants administered through CIS. GSF promotes and supports early-stage collaborations among MIT researchers and their counterparts in Mexico. The program has awarded more than 50 such grants to over 100 researchers since 2012 to fund collaborative projects that can involve both MIT and Mexican students.

With his appetite whetted by the Global Teaching Lab, Smith came back from Mexico in January determined to apply for an MIT-Mexico internship this summer.

“I decided that three weeks wasn’t enough for me to fully digest the entire city — so why not go again?” says Smith, who was accepted and leaves in early June for a research position at the Instituto Politécnico Nacional in Mexico City.

“Being in another country made me realize how much I’d like to travel the world and see the experiences that other people are having,” he adds. “I highly recommend the experience for anyone looking to do something impactful in another country while exploring the best parts of the community.”

Tackling cancer at the nanoscale

When Paula Hammond first arrived on MIT’s campus as a first-year student in the early 1980s, she wasn’t sure if she belonged. In fact, as she told an MIT audience yesterday, she felt like “an imposter.”

However, that feeling didn’t last long, as Hammond began to find support among her fellow students and MIT’s faculty. “Community was really important for me, to feel that I belonged, to feel that I had a place here, and I found people who were willing to embrace me and support me,” she said.

Hammond, a world-renowned chemical engineer who has spent most of her academic career at MIT, made her remarks during the 2023-24 James R. Killian Jr. Faculty Achievement Award lecture.

Established in 1971 to honor MIT’s 10th president, James Killian, the Killian Award recognizes extraordinary professional achievements by an MIT faculty member. Hammond was chosen for this year’s award “not only for her tremendous professional achievements and contributions, but also for her genuine warmth and humanity, her thoughtfulness and effective leadership, and her empathy and ethics,” according to the award citation.

“Professor Hammond is a pioneer in nanotechnology research. With a program that extends from basic science to translational research in medicine and energy, she has introduced new approaches for the design and development of complex drug delivery systems for cancer treatment and noninvasive imaging,” said Mary Fuller, chair of MIT’s faculty and a professor of literature, who presented the award. “As her colleagues, we are delighted to celebrate her career today.”

In January, Hammond began serving as MIT’s vice provost for faculty. Before that, she chaired the Department of Chemical Engineering for eight years, and she was named an Institute Professor in 2021.

A versatile technique

Hammond, who grew up in Detroit, credits her parents with instilling a love of science. Her father was one of very few Black PhDs in biochemistry at the time, while her mother earned a master’s degree in nursing from Howard University and founded the nursing school at Wayne County Community College. “That provided a huge amount of opportunity for women in the area of Detroit, including women of color,” Hammond noted.

After earning her bachelor’s degree from MIT in 1984, Hammond worked as an engineer before returning to the Institute as a graduate student, earning her PhD in 1993. After a two-year postdoc at Harvard University, she returned to join the MIT faculty in 1995.

At the heart of Hammond’s research is a technique she developed to create thin films that can essentially “shrink-wrap” nanoparticles. By tuning the chemical composition of these films, the particles can be customized to deliver drugs or nucleic acids and to target specific cells in the body, including cancer cells.

To make these films, Hammond begins by layering positively charged polymers onto a negatively charged surface. Then, more layers can be added, alternating positively and negatively charged polymers. Each of these layers may contain drugs or other useful molecules, such as DNA or RNA. Some of these films contain hundreds of layers, others just one, making them useful for a wide range of applications.

“What’s nice about the layer-by-layer process is I can choose a group of degradable polymers that are nicely biocompatible, and I can alternate them with our drug materials. This means that I can build up thin film layers that contain different drugs at different points within the film,” Hammond said. “Then, when the film degrades, it can release those drugs in reverse order. This is enabling us to create complex, multidrug films, using a simple water-based technique.”

Hammond described how these layer-by-layer films can be used to promote bone growth, in an application that could help people born with congenital bone defects or people who experience traumatic injuries.

For that use, her lab has created films with layers of two proteins. One of these, BMP-2, is a protein that interacts with adult stem cells and induces them to differentiate into bone cells, generating new bone. The second is a growth factor called VEGF, which stimulates the growth of new blood vessels that help bone to regenerate. These layers are applied to a very thin tissue scaffold that can be implanted at the injury site.

Hammond and her students designed the coating so that once implanted, it would release VEGF early, over a week or so, and continue releasing BMP-2 for up to 40 days. In a study of mice, they found that this tissue scaffold stimulated the growth of new bone that was nearly indistinguishable from natural bone.

Targeting cancer

As a member of MIT’s Koch Institute for Integrative Cancer Research, Hammond has also developed layer-by-layer coatings that can improve the performance of nanoparticles used for cancer drug delivery, such as liposomes or nanoparticles made from a polymer called PLGA.

“We have a broad range of drug carriers that we can wrap this way. I think of them like a gobstopper, where there are all those different layers of candy and they dissolve one at a time,” Hammond said.

Using this approach, Hammond has created particles that can deliver a one-two punch to cancer cells. First, the particles release a dose of a nucleic acid such as short interfering RNA (siRNA), which can turn off a cancerous gene, or microRNA, which can activate tumor suppressor genes. Then, the particles release a chemotherapy drug such as cisplatin, to which the cells are now more vulnerable.

The particles also include a negatively charged outer “stealth layer” that protects them from being broken down in the bloodstream before they can reach their targets. This outer layer can also be modified to help the particles get taken up by cancer cells, by incorporating molecules that bind to proteins that are abundant on tumor cells.

In more recent work, Hammond has begun developing nanoparticles that can target ovarian cancer and help prevent recurrence of the disease after chemotherapy. In about 70 percent of ovarian cancer patients, the first round of treatment is highly effective, but tumors recur in about 85 percent of those cases, and these new tumors are usually highly drug resistant.

By altering the type of coating applied to drug-delivering nanoparticles, Hammond has found that the particles can be designed to either get inside tumor cells or stick to their surfaces. Using particles that stick to the cells, she has designed a treatment that could help to jumpstart a patient’s immune response to any recurrent tumor cells.

“With ovarian cancer, very few immune cells exist in that space, and because they don’t have a lot of immune cells present, it’s very difficult to rev up an immune response,” she said. “However, if we can deliver a molecule to neighboring cells, those few that are present, and get them revved up, then we might be able to do something.”

To that end, she designed nanoparticles that deliver IL-12, a cytokine that stimulates nearby T cells to spring into action and begin attacking tumor cells. In a study of mice, she found that this treatment induced a long-term memory T-cell response that prevented recurrence of ovarian cancer.

Hammond closed her lecture by describing the impact that the Institute has had on her throughout her career.

“It’s been a transformative experience,” she said. “I really think of this place as special because it brings people together and enables us to do things together that we couldn’t do alone. And it is that support we get from our friends, our colleagues, and our students that really makes things possible.”